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The fol lowing t a b l e s  a r e  t h e  r e s u l t s  of c a l c u l a t i o n s  u s i n g  

the Lennard-Jones p o t e n t i a l .  

The f i r s t  two t a b l e s  give 0 ' ) ' a n d  O " * ( t h e  c l a s s i c a l  

and t h e  quantum correct ion$ as func t ions  of log E " .  For 

t h e  t h i r d  quantum c o r r e c t i o n  is no t  given, and t h e  column l abe led  

"IV" i s  the i n t e g r a l  approximation t o  t h e  f o u r t h  quantum c o r r e c t i o n  

(see S e c t i o n  2 of Chapter 11). 

The l a s t  s i x  t a b l e s  g i v e  a s  a func t ion  of T"  f o r  (R,AI 

equa l  t o  ( l , l . ) ,  ( l > 2 l j  ( 1 , 3 ) ,  (2,2), ( 2 , 3 ) ,  and ( 2 , 4 ) .  I n  t h e  

cases  where 1 = 2, o n l y  t h e  i n t e g r a l  approximation is given t o  the  

four t h  quan t urn c o r r e c t  1. on. 

The accuracy of t hese  t a b l e s  i s  i n  gene ra l  about .1 per c e n t .  
Gel* 

The @CL a r e  probably even more a c c u r a t e .  The l o w  reduced 

temperature va lues  of t h e  omega i n t e g r a l s  are  probably i n  e r r o r  

by about 2 per  c e n t .  
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CHAPTER VI1 

CONCLUDING REMARKS 

It i s  the  purpose of t h i s  t h e s i s  t o  e v a l u a t e  the  quantum e f f e c t s  

on a system under such cond i t ions  t h a t  t h e s e  quantum e f f e c t s  j u s t  

begin t o  become important .  ' The p a r t i c u l a r  quantum e f f e c t s  s t u d i e d  

a r e  t h e  t r a n s p o r t  c o l l i s i o n  i n t e g r a l s  which a r e  based on t h e  i n t e r -  

a c t i o n  between two p a r t i c l e s .  

Perhaps t h e  most imporant f e a t u r e  of t h i s  work i s  t h e  i n t r o d u c t i o n  

of t h e  concept of t h e  c l a s s i c a l  l i m i t  and t h e  d i s t i n c t i o n  between 

t h i s  and t h e  c l a s s i c a l  r e s u l t .  The coreless square w e l l  p o t e n t i a l  

was s t u d i e d  t o  demonstrate t h i s  d i f f e r e n c e  because t h e  i n t e g r a l s  

involved are known. This  i s  the excep t ion  r a t h e r  t han  t h e  r u l e .  

A s  t h i n g s  turned ou t ,  smoothness of the p o t e n t i a l  f u n c t i o n  was 

t raded f o r  ease of manipulation which r e s u l t e d  i n  inconc lus ive  

34 
r e s u l t s .  The numerical  r e s u l t s  -+for t h e  phase s h i f t  u s ing  t h e  

Lennard-Jones (12-6)  p o t e n t i a l  amply s u b s t a n t i a t e  t he  expres s ion  

f o r  t h i s  c l a s s i c a l  l i m i t .  

Numer i c a  1 l y  t h e  Q'*series a r e  probably more s i g n i f i c a n t  

s e r i e s .  They show i n  great d e t a i l  t h e  e f f e c t  (44* t han  t h e  

of t h e  inner  r eg ion .  The quantum c o r r e c t i o n s  t o  t h e  a r e  

u n f o r t u n a t e l y  l a r g e  over an extended reduced temperature range 

because of t h e  very l a r g e  quantum c o r r e c t i o n s  t o  t h e  f o r  

reduced ene rg ie s  below. . 8  . 
The p e r t u r b a t i o n  expansion series ig an e x c e l l e n t  check on t h e  
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h igh  reduced energy and temperature behavior of t h e  Lennard-Jones 

r e s u l t s .  

i n s i g h t  i n t o  t h e  n a t u r e  of t he  two expansions.  

The comparison of t h e  two r e s u l t s  a l s o  gives  a b i t  of 

It is  hoped by t h e  author t h a t  t he  r e s u l t s  obtained he re  w i l l  

a f f o r d  a l i t t l e  more i n s i g h t  i n t o  t h e  quantum e f f e c t s  on t h e  

t r a n s p o r t  c o e f f i c i e n t s  i n  those s i t u a t i o n s  where the  quantum e f f e c t s  

are small; t h a t  a g r e a t e r  understanding of s e m i c l a s s i c a l  approaches 

t o  t h i s  problem has been achieved;  and f i n a l l y ,  t h a t  t h e  concept of 

t h e  c l a s s i c a l  l i m i t  w i l l  prove advantageous i n  f u t u r e  c a l c u l a t i o n s  

of t h e  t r a n s p o r t  proper t i e s .  



APPENDIX I. D e t a i l e d  Development of 6) Lnd 0 '' :or MonrJt 3rbi  c 

P o t e n t i a l s ,  

This  appendix i s  a copy of  a r e p r i n t  o f  a pub l i cac ion  colitz,L?iig 

t h e  formal development of t h e  ser ies  f o r  Q' and Q' ) f o r  

monotonic p o t e n t i a l s  from the  series f o r  t h e  phase s h i f t ,  T h i s  

appendix inc ludes  the  d e t a i l s  of  t h e  d e r i v a t i o n  o f  S e c t i o n  I of 

Chapter 11. 
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Reprhted from TIE J o v ~ s . 4 ~  OF CxrevIc,n PHYSICS, Vol. 41, SO. 5 ,  1167-1173, 1 Scptcmbcr 196; 
Prhted in U. S. A. 

By 3 method developed earlier, thc second quantum correctioil to the phase shift in 3 collision betwccn 
particles with spherically symmctric potcntids is obt.rinccl. This caprcssion, along with the classical limit 
and t!ic first quantum corrcction developcd earlier, is used to o b t i n  thc classical limit and the first and 
second quantum corrections to the transport cross scctioiir Q(') and e(?). In  tlicsc cqmssions the potential 
function is not restricted to monotoric imctions; the r i d t s  apply to a potcntial with an attractive 
minimum. 

These quantitics are then used to obtain correipontling 
series expressions for the cross sections2 @(I) and @t2) 

which arise in the theory of the transport coel'iicicnts. 

~ i. 
g ( x )  i5 the function" 

reducecl  as^ of the two colliding particles, 

1. SECOND QGAMTUM CORRECTION TO TRZ PEASE 
SHIFT 

g(x) =x-i X 2 0 ,  

g ( x ) = O  x<o. 
The calculation of the phase shift 1 7 2  is bascci on the 

differential relation3 ) is thejth derivative of g(x) , cp is the intermolecu- 
h.r poiwtial, and L is defined as 

L=(l+4)h d a l / d E = n b (  E )  -p(') ( . ) ] J  (11 

where p(E)  is the density of states (pcr c n i t  energy 
interval) and p(O)(E) is the density in the ~l; .GiiiCC of 
an intcrmokcular potentia!. -4ccording to Fq. (50) of 
Rei. 

* This rcscarch was carried out under a giant i r m  ;!x Xctiioix:1 

t National Science Focndation Fellow, 1963-64. 
C. P. Curtiss 2nd R. S. Powers, Jr., J. Chem. Phys. 43, 3145 

(1964). 
3. 0. Hirschfelder, C. P. Ccrtiss, and n. B. Bird, .Uo~t?ciihr 

Tlicory of Gases und Lipids  (John Wiley SI Sam, h c . ,  Scw Yo:k, 
1954 ,  p. G75. 

e 1 is the angular momentum quantum number. 
'YJx %'.vj(r, L )  are functions defined in the previous 
p:i;>er through a set of recursion rclations. I t  is also 
s lx . , ;~~  C:nt the iesulting expansion for the phase shift 
is <,f iilc- iorm 

the density of states may bc exp:lnc;td in  

t 
x$?f37l(J>, (3) 

Science Foundation. 

j 

4 - ~ i ~ ~ ~  precige]y the function g ( x )  should be 

g(x) =lim Re(x+ie)-+. 
Referencc 2, p. 72. e-90 

1167 
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where (p is the effective potential 

$I = p+ (LZ/?) * ( 6) 
For the evaluntion of the second quaiiturn correction 

LO ilx phasc shift, it is necessary to obtain esplicit es- 
prcssions for the \V5j. From the rccursion relations of 
the previous paper, it is found that 

\ ~ ~ ~ = & ( l / r ~ ~ ) ,  

\vS3 = -2$ ( 1/3) 6' - $6 ( 1 /rZ) $" - rf &Pv), 

The coefiicients cill(h') may be written in terms of b 
and L. I n  particular it is readily shown that 

whcre 

and 

a , ( N )  = (2/i\T) (L/l)) g(h'), 

g(1) = 1 + ( l l j2  L )  

(12) 

(13) 

1 v g q  = &( 1/72) $"++&'+"'+a+igP*, 'I'hc phase shift ql+,jF can be written as a Taylor 

where 
j (+//4///2 j 4//3d/" - 

1 GJtt5 --- - _ - -  
114 4 4  +E 4 5  1')2o/c 

,. I his expression along with the espressions for v ~ ( l )  and 
q1C2) obtained previously are uscd in the nest sections 
to obtain the first and second quantum corrcctions to 
Q(') and e(?). 

2. CROSS SECTIONS Q(.Y) 

r .  1 he expressions for the t r i i nqmt  coc!iiciL.nLs Lvhich 
arise in the kinctic theory involve certain moInC!lts of 
thc collisional cross section, priiiiarily Q(1) and p. The 
quantum mechanical cxprcssion for tlicsc moments is 

~(~=-fi2Ca~(d\') 2n sin?XN; 
1: 2 ,  (9) E: 1-0 

where 

It follows from the series form of the XN, Eqs. (18) 
:mil (IO,), and the standard expansions of the sine and 

(20) . 
n 
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\ 

X conip ison  of this expression with the usual integral 
expression for angle of dcflcction x shows that under 
conditions such. that only one classical turning point 
exists; 

(22) 

xhTO= +A7x. (31) 
(23) 

If three classical turning points exist, the integral of 
Eq. ( 3 0 )  is an intcgral over the entire classical region, 
i.e., an integral bctivcen the two inner turning points 
plus thc integral from the third turning point to in- 
finity. Clearly, for an>- intermolccular potential with a 
hard core the angle of deflection x a t  L=O, a head on 
collhion, is T. Thus 

(21) 

+117XNd (-2Tx3XN(”+$x$”{) ] cos2XxO 

+ [ ~ ~ ~ n l ” X N O ( ’ V ) + ~ i ~ 2 $ N O I I + ~ N O  

-~.~-’xNOI?(~.~‘xN{’+$,,~O) ] sin2xyo. (24) 

The g(.”) may also bc written in a series form 

g ( N )  = ( 6 / q K g K ( m ,  (25) 
5: 

where 
go‘” = 1 

g,w = : 
g,‘l’=O 3 -  ’> 2; (26) 

*, 

and 
go(2) = 1 

g1(2) = 1 

glcr) = ( - 1 ) j+1,/4 j >  2. (27) 

I t  should be noted, however, that the series expansion 
of g(2) is valid only for L>$ or 1>$, i.e., it is valid for 
all (integer) I except Z=O. 

In  the evaluation of certain integrals and tlie correc- 
tion t e r m  in the Euler-MacLaurin expansion (which 
is introduced later), it  is convenient to make use of an 
expansion of the s,(*’) in powers of L. For this purpose 
we write 

S,,(Y) = C L m S l i n p ,  (28) 

S,,,”(S) = (l/ntl)[(d“/dL”)s,,(-\”lr;,o. (29) 

m 

where 

I’roni .the defnirion of xs0, Eq. (22) ,  and the explicit 
cspmsaion for q L ( I ) ,  Eq. (1), one finds on diffcreritiation 
that 

1 
(30) In the next two sections we consider the explicit 

evaluation of the series expressions for Q(l) and @c2). 

. 
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(27r/J;)!jz- ( 2 T / l ~ ) b : ( X I ( , ' ( O ) ) Z _ t  - * * .  (39) 
'1'11~ sccond Ihlcr-3lacL,aurin correction tcrni (and 

all otixi's: cvulu:ited a t  L= w )  gives no contribution 
to p. 

Tix third Euler-SlacLaurin correction term is 

or in t e r m  of the CSIXL? I sions ' 

oi' in ternis of the espnsions 
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Then again using the explicit esprcssions for the snnZ(l) 
this term becomes 

sions of -i:i?x2 Eq. (20) nni l  (3s) it follows that 

(8n/3~'; Q? sinzX2 jL-;b = ( ~ n / 3 ~ >  L ~ P + ? S , ~ ( ~ )  ]L.-)b, 

= (8n/3E) (Ijn+tE+2/2m) . T ~ ~ ( ~ ) ,  

= (&/E) (x20/ (0) )'Ij4+ * * . 

- (~r/30Ej b'(xl<(O) )'+ - * *.  (33) nm 

Ilighcr terms in the Euler-MacLaurin series involve 

In summary, the complete expansion for Q(l) through 

nm powcrs of lj yreatcr than 4. 
(46) 

terms of order Ij4 is 
In treniing the integral of Eq. (45) it is again con- 

vcnicnt to write the integral as the sum of two integrals: 

where X is an arbitrary constant. In order to make use 
of the series form of gcr) this constant X is taken to be 
greater than it. 

From the series cxpansions of g(?) and sin2x:, Eqs. 
(20) and (25), it is rzadily seen that the first integral 
on the right of the List equation is 

Since @(1) is expressetl as a power s c k ;  iii G2, this 
form of Q(l) is useful in those cascs whcrc t;:? (;ui1tilm 

collisions. 

Le t  us considcr nest the correction term in Eq. (47). 
cifects begin to play a but slgnli~!crL~ll . .^ rcjic ill I::.urn L i l t  series expansion of g('), sin2& and s,@, Eqs. 

( 2 0 ) ,  (25) , and ( 2 S ) ,  it is found that 
2 7  pl 

- - . Lg(2) sin2x.dL 4. EXPANSION 08 THE CROSS SECY=L3N QCP) 
E J x  The treatment of QC2) is more coinplicated thxi  that 

for l>$. To avoid this difficulty, the first t c r ~ l i  in the 
sum of Eq. (15) is treatcd esplicitly and thc sun1 of 
the remaining terms carried out by the Eulw-Mac- 

2n 31) Laurin approximation. After the transforinstion from 
I to L, the expression for @(') becomes E 2 X  

of Q(1) since the series expansion of gC2)  is vdid only 
-- - - - 2 7  C I j . + ~ ~ ~ ~ ~ ) s ~ ~ ~ 2 ' ~ t L m - K + ~ d L  

E nnix 

=- -  In- C~n++2g~+,(~)s,,(2) 

\ Combining the last two results, one finds that 

w1;erc 

s,,K= I, ~l-~. ' s , , (?)(~~fs~,~- ' (2)  1nX 
- (d~~-1,/~~;~~i-1) LgC?) sin'x2 I L ~ J ) .  (45) 

Tlie fir,t term in the 1 . i ~ ~  equation, thc I = O  term in 
the original sum, inay be handled in a i u n n ~ r  quite 
similar to that used in the discussion of the correction 
terms in the preceding section. From the series espan- 

m 

(2) 

Xm-K+2, ( 5  1) S,, +c m + ~ - z  m - L+ 2 
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It is easily shown that tlic S,I~ are intlcpendcnt cf 
the parameter X. Hence in evaluating tlicsc cociliciuntn 
we consider the limit X+O. I t  is clear t h t  tlic tcrn15 i n  
negative powcrs of A are just those ~ C C C + : ~ I . > V  to  ~ C I l X J V C  

divcrgeixcs which arise in extending t tic ill tcgral of 
the first term to zero. In this limit tlic tcrtiiL:, in the 
sum with positive p o w ~ r s  of X arc zcro. l ~ r o n i  tlic csplizit 
form of the s,,,,, Eq. ( 3 3 ) ,  i t  is readily SCCII that ternis 
involving negative powers of X and that involving lnX 
do not contribute to the sum 011 the right of h i .  (51) 
to terms of order b' or lower (in fact, or lo\s~er).  'rhus, 
restricting the consideration to these terms 

. .  series i:i Q/L it would appear that there would be an 
infinite number of corrcction terms. I t  is shown, how- 
wer .  !!me are only three. In  terms of the coefricients 
g#) ~..nd s,~,~(?), defined by Eqs. (23) and (28), it is 
readily shown that the first Euler-MacLaurin correc- 
t ion tcrni is 

(a,'!?) l ~ L g ( ~ )  sin'x? 

= ( T / E )  IJm+l-"t)~'+ri+l9(?)x,,,,,(?) I&;$ 
.- - ( T / ~ )  2 ( 2)  t n t l - ~ [  1 n+K+lsK(?)s,,m(2) I L  -;$ 

wnli 

t,,,tli 

= (15?r/E) (~2~, '(0))~$. '+. .- .  (56) 

'J'hc other Eu!cr-,1IacLaurin terms are found from 
the f-irst tcrm of the sun1 in Eq. (45). If the derivative 
of the product I ,R(~)  sin2x2 is considered explicitly the 
result is 

J "  

.. 
' 'Jt' and tllc e s ~ ~ r c ~ s i o ~ i  given in Eq. (58) becoines 
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From the definition of g@), Eq. (14), and definition 
of the A K ,  Eq. (60), it is found that 

A0 = %Z, 

A - 2 6  

&= (-I)K++'K!(2K-'/jX+') I<>?.  (63) 

1 - 3-5, 

\\.-ith these expressions it can be sho~vn thx: onl?- the 
first two terms (that is, j =  1 and 2) contrilidte to the 
siiin in Eq. (62),  and th3t the explicit result is 

--+gn/E) (X?((O) )"$1+ * f * .  ( 6 4  

In summary, the complete expression for Q('j through 
terms of order 114 is 

+ ;x2clt~sl,i- ; J.xnrV20l cos2x2.o 

+ C ~ ~ ( X ~ ~ ~ ) ~ - ~ J , ( X ~ O ~ ) ~ ~ ? S S -  J ~ z o -  (1/24L)x20" 

- ( 1/4L)#20] si n 2 ~ 2 ~  1 +-; i-3 (xw'( 0) )* + - - . (65) 

It is interesting to note that in QcL) all correction Lerms 
arisiiig from the Euler-J 
gral from 0 to $4 are of Q 

The expression for the 
sions between identical molecules is modified by the 
effects of statistics. The correct expression for Q(l) in 
this case is similar to that given by Eq. (9) for colli- 
sions between unlilie inolecules and is simply, modified 
by the replacement of the sum by twice the sum uvcr 
only even or only odd I, depending on the st'itistics or' 
the molecules. The explicit evaluation of the>e sums 
has been carried out in a manner similar to that dis- 
cti\sed in this section. The result is that t h v  series 
expression for Q(*) is not modified by  the statistics, at  
least through terms of order b4. 

I 

a 
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5. DISCUSSION 

In  this paper wc have obtained the first and second 
qunnrum corrections to the cross sections Q(1) and QC2) 
for collisions involving spherically symmetric potentials. 
The first quantum corrections to @(I) and @(?I have been 
d e ~ v h p e d  previously by de Boer and Bird5 based upon 
exprcs$ims for the phase shifts developed by Kahn! 
Tlic puqjose of the present development is twofold. 
Fir,t, the present esprcs~ions are not restricted (as the 
earlier rcsults are) to monotmic potcntials. Second, in 
the prezcnt development explicit espressions are ob- 
tai:id for the fir>t two cluaitum corrcctions. 

i he  present p q x r  is based GIZ expressions for the 
LS obtained by Curtis.; and Powers.1 These 

are not ri,tric.ted to monotonic (repulsive) 
as were K~ltn's earlier results). The expres- 
from those of Kahn, however, because of 

the use of a different boundary condition. I n  the 
Curtis>-Powers solution of the radial wave equation 
the boui:dary condition a t  the origin is considered 
esplicitl~-. Kahn's solution is essentially a solution on 
the itill infinite interval. De Boer7 has pointed out that  
at least Lhrough the first correction term the ttv6 ap- 

if-e identical results in that the difTerences 
e:. order in f i  (for a fixed value of Ifi, not a 

fiacd value of I) .  This is probably tnie if the series are 
trunc:itcc! After any finite number of terms, Thus the 
t:ro - L l - i t s  exp rc4 )ns  for the phase shifts probably 
give idcn tical series expressions for the cross sections. 

(but not @C2.)) ob- 
taincd in the prcsent p p c r  differs, however, from that 
obtained by de Boer and Bird in that it is larger by 
i7i. 'I'he origin of this difference lies in the neglect by 
de Eoer and Bird of the Eulcr-MacLaurin correction 
terms. 

The use of the esprcssions for @(I) and Q(*) in the 
evaluation of the quuntum corrections to the transport 
properties will he discussed in later papers. 

I T ,  

'['he ilr5t correction term to 
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11 Smith, and Yurin, I n  t h L s  srpperidix 4 general  exprtsilon f o r  

i s  presented .  

I n  genera l ,  QhQ2 

where 

With X = m y  we def i r i e  



wrier e 

" /  - b  
I "h-? 

The i t l t e k r  3 I 
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where 

where 

convenient t o  consider E V E D  arid ~ d d  /b/ s e p 3 r a t e l y .  Ihe  r e s t  of 



t 
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The sum from J = --ha+ I ]  t o  C' can be r e p l a c e d  by rhe sum f rom 

j = 0 t o  4 i f  - 



k 33 



There formulae appear d i f f i c u l t  t o  u s e g  bu t  a c t u a l l y  they a r e  not .  

The sums over 

cance l  t o  a g r e a t  e x t e n t .  

and J' extend t o  only f. N and t h e  f a c t o r i a l s  
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APPENDIX 111. The Computer Program 

Three s e t s  of computer programs were used i n  t h e  numerical  

e v a l u a t i o n  of t he  expres s ions  obtained i n  t h i s  t h e s i s ,  one s e t  for  

each p o t e n t i a l .  These programs a r e  w r i t t e n  i n  F o r t r a n  6 3  and were 

r u n  on t h e  CDC 1604 computer a t  t h e  Un ive r s i ty  of Wisconsin 

Computing Center.  This appendix con ta ins  a l i s t i n g  of t h e s e  

programs and information as t o  how they a r e  used. 

1. Square Well P o t e n t i a l  - Program SQWELLP 

This  program i s  w r i t t e n  i n  double p r e v i s i o n .  I n  order t o  use 

t h i s  program four  q u a n t i t i e s  m u s t  be s p e c i f i e d :  (1) the  va lue  of 

E + ( c a l l e d  GEESQD i n  the  program), ( 2 )  t h e  va lue  of A* 
i n  t h e  program), ( 3 )  t h e  maximum va lue  of P ( c a l l e d  ELAMST 

( c a l l e d  LEL i n  t h e  program. Note t h a t  LEL i s  an i n t e g e r .  

This  q u a n t i t y  i s  found from Eqn. (5 .2 - l ) ) ,  and ( 4 )  t h e  c o r r e c t  

dimensions f o r  t he  subsc r ip t ed  q u a n t i t i e s .  The dimension f o r  t he  

q u a n t i t y  PHASE i s  equa l  t o  . The dimension f o r  A, B, C ,  and 

T i s  2 1  + I O .  

The program p r i n t s  out each 1 followed by the  phase s h i f t  

f o r  t h a t  va lue  of 1 . This i s  followed on t h e  next  l i n e  by a 

p r i n t  out  of R and t h e  p a r t i a l  sums of @p and 0'). 
The process  then r e p e a t s .  The f i n a l  p r i n t  out i s  E* , A* , 
@$*, and 
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2. The Pe r tu rba t ion  Expansion - Programs MONOTON, FIRST, and SECOND. 

These programs c a l c u l a t e  t h e  q u a n t i t i e s  a s soc ia t ed  wi th  the  

monotonic p o t e n t i a l  given by Eqn, (4.2-18).  

Program MONOTON c a l c u l a t e s  and p r i n t s  ou t  t he  q u a n t i t i e s  X O  

( c a l l e d  C H I  i n  t h e  program), 2; ( C H I P ) ,  ?: (CHTDP), ,%a 

(PSI), f i ~ ~  (PHI), A, (A1 and A 2 ) ,  80 (B1 and B2), and 
GI 0 )  

f a f i '  (C1 and C 2 )  given by Eqns. (2 .  1 - 7 ) 9  (2 .  L-8)9 (2.-1-9)9 

(2. 1-10)9 ( 2 . 1 - l l ) ,  (4 .2-20) ,  (4.2-21),  and (4.2-22) r e s p e c t i v e l y .  

This program i s  not r e s t r i c t e d  t o  the  p o t e n t i a l ,  as a r e  - / L  

programs FIRST and SECOND. The abso lu te  va lue  of t h e  exponent 

must be put i n t o  t h e  program a s  the  quan t i ty  L, an i n t e g e r ,  and 

EL, a f l o a t i n g  p o i n t  number. The q u a n t i t i e s  po in ted  out  a r e  a l l  

l a b e l l e d .  

Prowam FIRST c a l c u l a t e s  and p r i n t s  out  t h e  q u a n t i t i e s  

Eqns. (4.2-14), ( 4 , 2 - 1 6 ) ,  (4.2-171, (4.2-231, and (4.2-24) 

r e s p e c t i v e l y .  The program i s  designed t o  inc lude  t h e  second 

3 9 z  0 

quantum c o r r e c t i o n  i f  'dl) i s  der ived ,  The q u a n t i t i e s  p r i n t e d  

out  a r e  a l l  l a b e l l e d .  

Program SECOND c a l c u l a t e s  and p r i n t s  ou t  t h e  q u a n t i t i e s  

(CHIDL) and Ap' (A12 and R 1 2 ,  which i s  misnamed) J'ZO 
3 A L  

given by Eqns. (4.2-15) and (4.2-25).  The q u a n t i t i e s  p r i n t e d  out  
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are a l l  l abe led .  

Programs FIRST and SECOND a r e  made t o  be c a l c u l a t e d  only 

once, s i n c e  t h e  p o t e n t i a l  i s  fixed i n  t h i s  d e r i v a t i o n  of t h e  

q u a n t i t i e s .  Their l i s t i n g s  a r e  included i n  case  they a r e  extended 

t o  higher  terms i n  t h e  s e r i e s .  Program MONOTON i s  not  r e s t r i c t e d ,  

bu t  works f o r  any r e p u l s i v e  p o t e n t i a l  which f a l l s  o f f  f a s t e r  than 

t 
I - 

3. The Lennard-Jones Potential-Programs TRYBNTEG and OMEGA. 

These programs c a l c u l a t e  t h e  q u a n t i t i e s  a s s o c i a t e d  w i t h  t h e  

Lennard-Jones (12-6) p o t e n t i a l  given by Eqn. (5.4-1).  

Program TRYBNTEG c a l c u l a t e s  and p r i n t s  out the t u r n i n g  

p o i n t s  (RONE, RTWO, and RTEWEE) f o r  t he  p a r t i c u l a r  combination of 

6 +  and L * u s e d ,  t he  values of t he  maximum (RGREATER) and 

minimum (RLESSER) of the e f f e c t i v e  p o t e n t i a l  ( i f  they e x i s t ) ,  b 

(CHIDP), yZu (PSI), and @u (PHI) corresponding t o  Eqns. ( 2 . 2 - 3 )  
6 )  .w 

through (2.2-7),  and o::‘ (QoNEcL) , Q c  L (QTwocL) , Q:’” 
(QONEI 1 , @$ .Ic (QTWOT 1 , q$’ Y Q O N E I I )  , and QZ *(QTwoII) 

corresponding t o  Eqns. (2 .1-14)  and (2.1-15). The program also 

p r i n t s  ou t  t h e  “type” of: c o l l i s i o n  a s  c l a s s i f i e d  i n  F i g s .  5.4a, b, 

c ,  and d .  Cases I, 11, and I11 a r e  regarded by t h e  program a s  

SECTION C, D, and A r e s p e c t i v e l y .  

The d a t a  i s  provided on punched ca rds  placed a t  t h e  end of t he  

program. The f i r s t  d a t a  c.ard, under a format of 412, s p e c i f i e s  
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t h e  number of p o i n t s  i n  t h e  i n t e g r a t i o n  over b Q s  and f o r  s e c t i o n s  

A ,  C ,  and D r e s p e c t i v e l y .  The Gauss-Legendre p o i n t s  and weights  

f o r  t h e  number of p o i n t s  specified i n  t h e  b“ i n t e g r a t t o n  must a l s o  

be placed i n  t h e  bGdy of t h e  pregram, subsc r ip t ed  from minus t o  

p l u s  (as an  example, t h e  s e t  of 32 Gauss-Legendre p o i n t s  and 

weights  a r e  included i n  t h e  program l i s t i n g .  This  nuaber of p o i n t s  

was used i n  t h e  numerical  i n t e g r a t i o n ) .  The number of  p o i n t s  i n  

t h e  i n t e g r a t i o n  f o r  SECTION A w a s  96, fo r  SECTION C , 6 4 ,  and 

f o r  SECTION D, 96 .  It i s  a l s o  necessary t o  s e t  t h e  DIMENSION 

statement  s o  thac th t \  dirrensioas of t h e  subsc r ip t ed  q u a n t i t i e s  a r e  

g r e a t e r  than tI;or,e r ead  iil.. 

The r e s t  G <  t h e  d a t a  c a r d s  give t h e  v a l t e s  cf t h e  reduced 

e n e r g i e s  fo r  which the czil;uiations a r e  t o  be performed. Each 

card  conta ins ,  unlier a form;t of  FP2 0, t h e  1ogari.tfim t o  t h e  base  

t e n  of the energy. The l a s t  d a t a  card  must be  l O c 3 1 ,  T h i s  p rovides  

a means of s topping  t h e  pragrarn when a l l  t h e  d a t a  has been processed.  

66J * The pr o g r m  OMEGA c a l c u l a t e s  t h e  of Eqn, ( 2 . 3 - 4 )  

us ing  the as  the  input  da t a .  The s u f f i x e s  CL, 01, I D ,  00, 

and I1 rep resen t  t h e  c l a s s i c a l  l i m i t  and t h e  f i - r s t ,  second, t h i r d ,  

and fou r th  quantum c o r r e c t i o n s  r e s p e c t i v e l y .  The 

c a l l e d  QONECL, t h e  6$“Y”are c a l l e d  QONEOI,  e t @ .  f o r  bo th  

,f= 1 and 2 a 

Q@’ e l  * a r e  

The d a t a  i s  placed a t  t h e  end of t h e  program i n  t h e  fo l lowing  

(1) t h e  va lues  of AL and 1 on t h e  same card  (wi th  a o r d e r :  
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format of 2F10.0), ( 2 )  t he  lowest va lue  of the reduced temperature 

(with a format of F10.0) ,  (3) the increment of t he  reduced temperature 

(with a format of FIO,O),  ( 4 )  the h ighes t  reduced temperature (with 

a format of FlO.O), and (5) the The d a t a  c a r d s  f o r  t he  

@@'*are punched a s  described by s ta tements  2 and 14 i n  the  

program. Note t h a t  t w o  c a r d s  a re  necessary t o  r ead  i n  a l l .  of t h e  

va lues  a t  a p a r t i c u l a r  energy. The ca rds  are r ead  by p a i r s ,  i n  

groups of f i v e  p a i r s .  The l a s t  p a i r  of one group must be i d e n t i c a l  

w i t h  t h e  f i r s t  p a i r  of t h e  next group of f i v e  p a i r s .  The l a s t  card 

must be -1001, 
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